以下是【小柯】分享的内容全文:
零基础系统深入学习机器学习精品课程教程下载。本教程适合人工智能初学者;想系统学习机器学习,理解机器学习流行模型的研发人员;希望查漏补缺,巩固机器学习基础的从业者;对机器学习有浓厚兴趣的其他相关人员。备注:本课程为音频+文字课程。
第一个模块是机器学习概观,介绍机器学习中超脱于具体模型和方法之上的一些共性问题,将从概率的两大派别开始。众所周知,概率在机器学习中扮演着核心角色,而频率学派与贝叶斯学派对概率迥异的认知也将机器学习一分为二,发展出两套完全不同的理论体系。正所谓兼听则明偏听则暗,理解机器学习时应该看到这同一枚硬币的两面,以获得完整的认知。除此之外,本模块还涵盖了计算学习等机器学习的理论问题,以及关于模型和特征的一些实验主题。
第二个模块将讨论频率学派发展出的机器学习理论――统计学习。统计机器学习的核心是数据,它既从数据中来,利用不同的模型去拟合数据背后的规律;也到数据中去,用拟合出的规律去推断和预测未知的结果。统计学习中最基础的模型是线性回归,几乎所有其他模型都是从不同角度对线性回归模型做出的扩展与修正。因此,在这个模块中,我将以线性模型为主线,和你一起浏览它的万千变化,观察从简单线性回归到复杂深度网络的发展历程。
第三个模块将讨论贝叶斯学派发展出的机器学习理论――符号学习,也就是概率图模型。和基于数据的统计学习相比,基于关系的图模型更多地代表了因果推理的发展方向。贝叶斯主义也需要计算待学习对象的概率分布,但它利用的不是海量的具体数据,而是变量之间的相关关系、每个变量的先验分布和大量复杂的积分技巧。在这个模块中,我将围绕概率图模型中的表示、推断、学习三大问题展开介绍,认识贝叶斯面纱下的机器学习。
备注:本课程为音频+文字课程。
1.软件源码推广展示:目的展示软件相关功能,接收技术学习者测试、测评;
2.教程课程信息展示:展示课程信息,传授课程各阶段内容;
3.设计素材图片展示:展示素材设计理念、思维方式、传播设计理念;
4.福利优惠信息展示:分享各类最新的福利信息,各种优惠信息展示;
以上分享目的仅供学习、参考使用,请勿用于其他用途,如果想商业使用或者代理,请自行联系版权方获取授权。任何未获取授权的商业使用与本站无关,请自行承担相应责任。
本站不存储任何资源文件,敬请周知!
如果您认为本页信息内容侵犯了您的相关权益(包含但不限于:著作权、首发权、隐私权等权利),或者您认为自己是此信息的权利人但是此信息不是自己发布的,可以直接版权举报投诉,我们会根据网站注册协议、资源分享协议等协议处理,以保护您的合法权益。
本网站采用 BY-NC-SA 协议进行授权 转载请注明原文链接:零基础系统深入学习机器学习精品课程

侵权举报/版权申诉



